Молодежная научная школа

Методы и системы управления плазмой в токамаках

Отчет за 2021-2022 гг.

Научный руководитель: д.т.н., профессор МГУ, г.н.с. ИПУ Ю.В. МИТРИШКИН Докладчик: м.н.с. ИПУ А.Е. КОНЬКОВ

Лаб. № 41

Институт проблем управления им. В.А. Трапезникова РАН Москва, 23 мая 2022 г.

Состав МНШ

Митришкин Ю.В. д.т.н., профессор МГУ, г.н.с. ИПУ, Научный руководитель МНШ

- **1. Карцев Н.М.** к.т.н., с.н.с. ИПУ
- **2. Коренев П.С.** н.с. ИПУ
- 3. Павлова Е.А. н.с. ИПУ
- 4. Коньков А.Е. м.н.с. ИПУ
- 5. Кружков В.И. м.н.с. ИПУ, аспирант МГУ
- 6. Овсянников Н.Е. инженер ИПУ, аспирант МГУ
- 7. Иванова С.Л. инженер, бакалавр МГУ
- 8. Смирнов И.С. техник, бакалавр МГУ

Изменения в составе МНШ

• Карцев Н.М. к.т.н., с.н.с. ИПУ – выбыл по достижению предельного возраста (35 лет)

Название проекта в ИПУ (2021-2022 – 2022-2023 гг.): Развитие на цифровом моделирующем комплексе реального времени методов и систем диагностики, идентификации и магнитного управления высокотемпературной плазмой в D-образных токамаках Статус заявки 2 года

Грант РНФ (2021-2024 гг.)

Разработка и создание специализированной высокотехнологичной компьютерной платформы реального времени и развитие на ней цифровых методов и систем диагностики, идентификации и магнитного управления высокотемпературной плазмой в сферическом токамаке Глобус-М2 с последующим применением в эксперименте

Научный руководитель д.т.н., профессор, г.н.с. Ю.В. Митришкин

Статьи в рецензируемых журналах (6 статей)

- 1. Y.V. Mitrishkin, P. S. Korenev, A. E. Konkov, V. I. Kruzhkov, N. E. Ovsyannikov. New identification approach and methods for plasma equilibrium reconstruction in D-shaped tokamaks. **Mathematics**. 2022, *10*, 40 (Q1).
- Y.V. Mitrishkin, P.S. Korenev, A.E. Konkov, N.M. Kartsev, I.S. Smirnov. New horizontal and vertical field coils with optimised location for robust decentralized plasma position control in the IGNITOR tokamak. Fusion Engineering and Design. 174 (2022) 112993.
- 3. Y.V. Mitrishkin. Plasma magnetic control systems in D-shaped tokamaks and imitation digital computer platform in real time for controlling plasma current and shape. Advances in Systems Science and Applications. 2022, V. 22, No 1, pp. 1-14.
- 4. Ю.В. Митришкин, И.С. Смирнов, А.Е. Коньков. Моделирование цифровой системы управления неустойчивым вертикальным положением плазмы в D-образном токамаке в реальном времен. **ВАНТ. Сер. Термоядерный синтез**, 2022, т. 45, вып. 1, с. 29-41.
- 5. Ю.В. Митришкин, П.С. Коренев, А.Е. Коньков, Н.М. Карцев. Подавление смещений плазмы по вертикали системой управления неустойчивым вертикальным положением плазмы в D-образном токамаке. Автоматика и телемеханика, № 4, 2022, с. 100-124.
- 6. Y. V. Mitrishkin, P. S. Korenev, A. E. Konkov, and N. M. Kartsev, "Suppression of Vertical Plasma Displacements by Control System of Plasma Unstable Vertical Position in D-Shaped Tokamak," Automation and Remote Control, vol. 83, no. 4, pp. 579–599, Apr. 2022, doi: 10.1134/S0005117922040051. [перевод]

Доклады на конференциях (8 докладов)

- 1. Митришкин Ю.В. Физико-математические методы и информационно-интеллектуальные технологии цифрового управления плазмой в D-образных токамаках. РФЯЦ-ВНИИЭФ, Саров, 19-20 октября 2021 г.
- Митришкин Ю.В., Кружков В.И. Быстродействующее восстановление формы плазмы в реальном времени в сферическом токамаке Глобус-М2 нейронной сетью по обработанным данным алгоритмом идентификации итерациями Пикара. – 2022. Сб. трудов: Ломоносовские чтения, секция: Прикладная математика и математическое моделирование. Физический факультет МГУ им. М.В. Ломоносова. 20 апреля 2022 г.
- Митришкин Ю.В., Иванова С.Л. Синтез системы робастного управления положением плазмы в токамаке посредством QFT и ее моделирование на стенде реального времени. – 2022. Сб. трудов: Ломоносовские чтения, секция: Прикладная математика и математическое моделирование. Физический факультет МГУ им. М.В. Ломоносова. 20 апреля 2022 г.
- 4. В.И. Кружков. НАСТРОЙКА СИСТЕМЫ УПРАВЛЕНИЯ ПОЛОЖЕНИЕМ ПЛАЗМЫ И ПОЛОИДАЛЬНЫМИ ТОКАМИ ТОКАМАКА ГЛОБУС-М2 И РЕАЛИЗАЦИЯ НА СТЕНДЕ РЕАЛЬНОГО ВРЕМЕНИ. XVII Всероссийская школаконференция молодых ученых «Управление большими системами», Москва, 6–9 сентября 2021 г. (2021 г.).
- 5. П.С. Коренев, А.Е. Коньков. ВОССТАНОВЛЕНИЕ РАВНОВЕСИЯ ПЛАЗМЫ ТОКАМАКА В РЕАЛЬНОМ ВРЕМЕНИ МЕТОДОМ ТОКОВЫХ КОЛЕЦ. Труды 17-й Всероссийской школы-конференции молодых ученых «Управление большими системами» (УБС'2021, Москва). М.: ИПУ РАН (2021 г.).
- 6. Artem Konkov, Pavel Korenev, Yuri Mitrishkin. Real-Time Test Bed for Plasma Magnetic Control in Tokamaks. International Congress "Modeling of complex technical systems", April 6 and 7, 2022, Moscow, Bauman Moscow State Technical University. (in press). Международный конгресс «Моделирование сложных технических систем», 6 и 7 апреля 2022г., г. Москва, МГТУ им. Н.Э. Баумана.
- 7. Ю. В. Митришкин, А. Е. Коньков, П. С. Коренев. Цифровой моделирующий стенд реального времени для управления плазмой в токамаках. XVI Международной конференции «Устойчивость и колебания нелинейных систем управления» (Конференция Пятницкого). Россия, ИПУ РАН, 1-3 июня, 2022 (Принят).
- 8. Artem E. Konkov, Yuri V. Mitrishkin Comparison Study of Power Supplies in Real-Time Robust Control Systems of Vertical Plasma Position in Tokamak. IFAC 11th Symposium on Power and Energy Systems. Online, on June 21-23, 2022. (Accepted).

Доклады в НИЦ «Курчатовский институт», институт физики токамаков (2 доклада)

- Митришкин Ю.В. Физико-математические методы и информационно-интеллектуальные технологии цифрового управления плазмой в D-образных токамаках. НИЦ «Курчатовский институт», Москва, 7 октября 2021 г.
- Митришкин Ю.В. Сравнение систем управления вертикальным положением плазмы в токамаке Т-15МД с разными исполнительными устройствами. НИЦ «Курчатовский институт», Москва, 11 ноября 2021 г.

Доклады в ФТИ им. Иоффе, лаборатория физики плазмы

 Коньков А.Е., Коренев П.С. Внедрение машины реального времени на токамак Глобус-М2. ФТИ им. Иоффе, С. Петербург, 15 марта 2022 г.

Подготовлены заявки на изобретения (патенты) (2 заявки)

- Митришкин Ю.В., Коньков А.Е. Способ импульсного управления положением плазмы в D-образном токамаке.
- Митришкин Ю.В. Способ быстродействующей идентификации равновесия плазмы в токамаке.

Разработка специализированного программного обеспечения (будет получено свидетельство о госрегистрации ПО)

- Коньков А.Е. VisualPSI приложение для визуализации восстановленного равновесия плазмы в токамаке
- Коньков А.Е. *Tokamak Datasets Processing Toolbox* Matlab toolbox для обработки экспериментальных данных плазменных разрядов в токамаке.

Доклады на международную конференцию 15th International Conference 'Intelligent Systems' (INTELS'22), December 14-16, 2022, Moscow, Russia (4 доклада)

- Y.V. Mitrishkin. Hierarchical cascade control systems for time-dependent dynamical plants as applied to magnetic plasma control in D-shaped tokamaks (Plenary report).
- A.E. Konkov, P.S. Korenev, Y.V. Mitrishkin. New approach to identifying plasma current and poloidal magnetic fluxes using ARX model in Globus-M2 tokamak.
- Pavel S. Korenev, Artem E. Konkov, Yuri V. Mitrishkin. Real-time plasma equilibrium identification for Globus-M2 tokamak.
- V.I. Kruzhkov, Y.V. Mitrishkin. Real-time hardware identification of complex dynamical plant by artificial neural network based on experimentally processed data by smart technologies.
- Y.V. Mitrishkin, E.A. Pavlova. LMI-Synthesis and analysis of plasma vertical position control systems in tokamak.

На основании сделанных докладов предполагается представление статей в журналы высокого уровня:

- Plasma Physics and Technology
- Control Engineering Practice
- Mathematics
- Automation and Remote Control

Монография:

Митришкин Ю.В. Иерархические каскадные системы управления нестационарными динамическими объектами применительно к магнитному управлению плазмой в D-образных токамаках. URSS. 200 с.

Связи с организациями, имеющими токамаки

1,48 m

0,67 M 2,2 1,7-1,9

2 Тл

2 MA

5-10 c

СФЕРИЧЕСКИЙ ТОКАМАК ГЛОБУС-М2 (действующий) ФТИ им. А.Ф. Иоффе РАН, г. С-Петербург, Россия

Параметры плазмы

Большой радиус плазмы	0,36 м
Малый радиус плазмы	0,24 M
Аспектное отношение	1,5
Вытянутость	2,2
Тороидальное магнитное поле	1,2 T
Ток плазмы	0,4 MA
Длительность импульса	200 мс

Большой радиус плазмы	0,9 м
Малый радиус плазмы	0,45 m
Аспектное отношение	2
Вытянутость	1,7
Тороидальное магнитное поле	1 T
Ток плазмы	0,75 MA
Длительность импульса	
Длительность импульса	5 c

ТОКАМАК Т-15МД (сооружен, готовится к запуску) НИЦ «Курчатовский институт», г. Москва, Россия

Параметры плазмы

Большой радиус плазмы
Малый радиус плазмы
Аспектное отношение
Вытянутость
Тороидальное магнитное поле
Ток плазмы
Мощность систем нагрева
Длительность импульса

Horizontal coordinate (m)

Токамак ИГНИТОР АО «ГНЦ РФ ТРИНИТИ» (проект с заменой на проект ТРТ – токамак с реакторными технологиями)

Параметры плазмы

Большой радиус плазмы	1,32 м
Малый радиус плазмы	0,47 M
Аспектное отношение	2,8
Вытянутость	1,8
Тороидальное магнитное поле	13 Тл
Ток плазмы	11 MA
Длительность импульса	<u>1</u>0 c

Казахстанский токамак материаловедческий (КТМ) Национальный ядерный центр, Республика Казахстан

Цифровой стенд реального времени (ИПУ РАН – МГУ) Машина реального времени – Регулятор

Машина реального времени – Модель объекта

Клеммы модулей входа-выхода

Мониторы машин реального времени

Схема модели объекта

Схема регулятора

Результаты моделирования в реальном времени

Хост-компьютер (АРМ оператора стенда)

Цифровой двойник системы магнитного управления плазмой

ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ В 2022-2023 ГГ.

- Дальнейшее развитие систем управления положением, током и формой плазмы в токамаке Глобус-М2 с управлением зазорами и выравниванием потока на сепаратрисе (isoflux control) с алгоритмом восстановления равновесия плазмы в обратной связи на цифровом стенде реального времени:
 - о с применением метода линейных матричных неравенств для настройки регуляторов и получения идентифицированных моделей плазмы;
 - $\circ\,\,$ с двойной развязкой каналов посредством RGA и H_{∞} -оптимизации.
- Внедрение на токамаке Глобус-М2 разработанных алгоритмов восстановления равновесия плазмы с итерациями Пикара и филаментами.
- Разработка алгоритмов дуального управления на примере управления неустойчивым вертикальным положением плазмы в D-образном токамаке.
- Разработка технического задания на внедрение целевой машины реального времени на токамаке Глобус-М2.
- Продолжение разработки эволюционного магнитно-кинетического кода плазмы в токамаках.
- Создание моделей эволюции профилей температуры, концентрации и давления в плазме токамака Глобус-М2.
- Разработка методов управления профилями плазмы посредством алгоритма обучения с подкреплением. 12

Порядок выступлений

- 1. Коренев П.С., Коньков А.Е. Восстановление равновесия плазмы в реальном времени в системе магнитного управления плазмой D-образного токамака
- 2. Коньков А.Е. Разработка и моделирование систем магнитного управления плазмой в токамаках Глобус-М2 и Т-15 МД
- 3. Карцев Н.М. Подавление смещений плазмы по вертикали в токамаке ИГНИТОР
- 4. Кружков В.И. Идентификации зазоров, полученных алгоритмом FCDI, и настройка системы управления положением плазмы и токами в катушках полоидального поля в токамаке
- 5. Павлова Е.А. Разработка и моделирование систем магнитного управления неустойчивым вертикальным положением плазмы в токамаке Т-15МД методом LMI
- 6. Иванова С.Л. Робастное и адаптивное управление неустойчивым вертикальным положением плазмы в токамаке
- 7. Смирнов И.С. Автоколебательная система управления неустойчивым вертикальным положением плазмы в токамаке Т-15МД с релейным исполнительным устройством
- 8. Овсянников Н.Е. Разработка модели концентрации электронов в токамаке Глобус-М2 при помощи искусственной нейронной сети

Молодежная научная школа «Методы и системы управления плазмой в токамаках» Научный руководитель д.т.н., профессор Ю.В. Митришкин Отчет за 2021-2022 гг. Россия, Москва, ИПУ РАН, 23 мая 2022 г.

Восстановление равновесия плазмы в реальном времени в системе магнитного управления плазмой D-образного токамака

н.с. Коренев П.С., м.н.с. Коньков А.Е. ИПУ РАН

Проблема УТС

Принцип работы токамака

Proton O Neutron

Сферический токамак Глобус-М2

Фотография

Вид сверху

Полоидальный магнитный поток

Определение полоидального магнитного потока

$$\psi(P) = \frac{1}{2\pi} \int_{S(P)} \vec{B} d\vec{S}$$

$$\vec{B} = \nabla \psi \times \nabla \varphi$$

Полоидальный магнитный поток

Задача восстановления равновесия плазмы по измерениям магнитной диагностики вне плазмы

Постановка задачи: найти ψ и J такие, что:

$$\begin{split} \left[R \frac{\partial}{\partial R} \frac{1}{R} \frac{\partial}{\partial R} \psi + \frac{\partial^2}{\partial Z^2} \psi = -\mu_0 R J, \\ \psi \Big|_{R=0} &= 0, \\ \psi \Big|_{R=\infty} &= 0, \\ \iint_{S_p} J dS = I_p, \\ \iint_{S_j} J dS = I_j, \quad j = 1, ..., N \\ \psi (R_i, Z_i) = \psi_i^M, \quad i = 1, ..., M. \end{split}$$

Выполняется уравнение, связывающее токи и магнитные потоки в токамаке

Выполняются ограничения на измеренные:

- Ток плазмы,
- Токи в катушках токамака,
- Значения магнитного потока вне плазмы.

Алгоритм FCDI (Flux-Current Distribution Identification)

Входы алгоритма:

- Потоки на 21-й магнитной петле
- 8 токов в обмотках полоидального поля
- Ток плазмы

Выходы алгоритма:

- Положение ударных точек
- Зазоры между этими точками и камерой
- 24 точки на границе плазмы
- Вытянутость
- Верхняя и нижняя треугольность

Алгоритм может работать в двух режимах:

- Итерации Пикара (FCDI-I)
- Неподвижные филаменты (FCDI-F)

Полоидальное сечение токамака Глобус-M2

Код FCDI-I (Режим итераций Пикара)

Уравнение Града-Шафранова

$$R\frac{\partial}{\partial R}\left(\frac{1}{R}\frac{\partial}{\partial R}\psi\right) + \frac{\partial^2}{\partial Z^2}\psi = -\mu_0 RJ = -\mu_0 R^2 \frac{d}{d\psi}p - F\frac{d}{d\psi}F$$

Ток плазмы аппроксимируется полиномами от полоидального магнитного потока

$$\frac{d}{d\psi}p = \sum_{k} c_{k}^{(p)}\psi^{k}, \qquad F\frac{d}{d\psi}F = \sum_{k} c_{k}^{(F)}\psi^{k}.$$

Коэффициенты полиномов ищутся минимизацией суммы квадратов ошибок между показаниями датчиков и полученным решением:

$$\chi^{2} = \sum_{i=1}^{M} \left(\frac{\psi_{i} - \psi_{i}^{M}}{\sigma_{\psi}} \right)^{2} + \left(\frac{I_{v} - I_{v}^{M}}{\sigma_{v}} \right)^{2} + \left(\sum_{j} I_{j} - I_{p}^{M} \right)^{2} / \sigma_{p}^{2} \rightarrow \min_{c_{k}^{(p)}, c_{k}^{(F)}}$$

Время восстановления равновесия на каждом шаге на ЦМРВ – 200 мкс.

Код FCDI-F (режим неподвижных филаментов)

Ток плазмы аппроксимируется набором бесконечно тонких токовых колец с заданными координатами и плотностью тока вида

$$J_p = \sum_{j=1}^{L} I_j \delta(R - R_j, Z - Z_j) \,.$$

Токи *I*_j вычисляются минимизацией суммы квадратов ошибок между показаниями датчиков и полученным решением:

$$\chi^{2} = \sum_{i=1}^{M} \left(\frac{\psi_{i} - \psi_{i}^{M}}{\sigma_{\psi}} \right)^{2} + \left(\frac{I_{v} - I_{v}^{M}}{\sigma_{v}} \right)^{2} + \left(\sum_{j} I_{j} - I_{p}^{M} \right)^{2} / \sigma_{p}^{2} \to \min_{I_{j}}$$

Время восстановления равновесия на каждом шаге на ЦМРВ – 30 мкс.

Визуализация восстановленного равновесия плазмы алгоритмом FCDI

Интерфейс специализированного приложения VisualPSI

Визуализация восстановленного равновесия плазмы алгоритмом FCDI

сигналы магнитной диагностики: пояса Роговского и магнитные петли.

Линейная модель плазмы в токамаке из первых принципов

Уравнение контуров токов в токамаке

$$\frac{d}{dt}\Phi(I,r,z)+RI=U$$

Баланс сил, действующих на плазму

 $\vec{F}(I,r,z)=0$

Итоговый вид модели в дискретном времени

$$\begin{cases} x(T_sk+T_s) = A_k x(T_sk) + B_k u(T_sk), \\ y(T_sk) = C_k x(T_sk). \end{cases}$$

Входы модели *и*:

Напряжения на 8 обмотках токамака

Состояния модели *х* :

- Токи в 8 обмотках токамака
- 15 токов на камере токамака
- Ток плазмы

Выходы модели **у**:

- Вертикальное положение плазмы
- Горизонтальное положение плазмы
- Ток плазмы
- Токи в 8 катушках токамака
- 6 зазоров между плазмой и камерой токамака

Модель в пространстве состояний имеет: 24 состояния, 8 входов, 17 выходов. Шаг дискретизации: *Т_s* = 100 мкс

Заключение

- Разработан быстродействующий алгоритм FCDI для восстановления равновесия плазмы D-образного токамака в реальном времени.
- Разработаны линейные модели плазмы в отклонениях от сценарных значениях плазменного разряда
- Готовится внедрение разработанных алгоритмов восстановления равновесия плазмы в рабочий процесс экспериментов сферического токамака Глобус-М2 в ФТИ им. А.Ф. Иоффе, г. С. Петербург.

Молодежная научная школа «Методы и системы управления плазмой в токамаках» Научный руководитель д.т.н., профессор Ю.В. Митришкин Отчет за 2021-2022 гг. Россия, Москва, ИПУ РАН, 23 мая 2022 г.

РАЗРАБОТКА И МОДЕЛИРОВАНИЕ СИСТЕМ МАГНИТНОГО УПРАВЛЕНИЯ ПЛАЗМОЙ В ТОКАМАКАХ ГЛОБУС-М2 И Т-15 МД

Коньков А.Е.

Идентификация модели тока плазмы и полоидальных потоков на магнитных петлях

Идентификации подлежит блок "Plasma & Diagnostics"

Постановка задачи:

Необходимо получить линейную модель: входы – токи в обмотках полоидального поля выходы – ток плазмы и 21 поток на магнитных петлях Всего 8 входов и 22 выхода.

Алгоритм решения:

- Идентификация осуществляется по экспериментальным данным.
- Составляется ARX (AutoRegressive with eXternal inputs) модель
- Проводится идентификация ARX модели
- ARX модель преобразуется к модели в пространстве состояний

Полоидальная система (токамак без плазмы) [модель известна точно]

Расчет положений плазмы [модель известна точно]

Плазма и магнитная диагностика [подлежит идентификации]

Результат:

После перехода от ARX модели к модели в пространстве состояний получена модель в дискретном времени. Шаг дискретизации 100 мкс. Получена одна линейная модель для всего разряда.

$$\begin{cases} x(T_{s}k + T_{s}) = A \ x(T_{s}k) + B \ I_{PF}(T_{s}k), \\ \left[I_{P}(T_{s}k) \ \Psi^{\mathrm{T}}(T_{s}k) \right]^{\mathrm{T}} = C \ x(T_{s}k) + D \ I_{PF}(T_{s}k), \end{cases}$$

Результаты идентификации

Экспериментальный ток плазмы – синий сигнал. Ток плазмы на выходе идентифицированной модели – красный. Разряд № 37325 Структурная схема иерархической каскадной системы управления положением, током и формой плазмы с алгоритмом восстановления равновесия плазмы в обратной связи

- Регуляторы настроены на модели в отклонениях от сценарных значений
- Модель в отклонениях рассчитывается по экспериментальным данным прошлых разрядов
- Алгоритм восстановления равновесия плазмы в обратной связи
- На вход алгоритма поступает сумма сценарных значений токов и потоков и их отклонений
- Задающими воздействиями являются отклонения зазоров и тока плазмы от сценарных значений

Митришкин Ю.В., Прохоров А.А., Коренев П.С., Патров М.И. Способ моделирования систем магнитного управления формой и током плазмы с обратной связью в токамаке. Патент № 2702137. Дата приоритета 28.04.2017.

Каскад управления токами в обмотках полоидального поля и положение плазмы

Система обмоток полоидального поля токамака

Структурная схема системы управления токами в обмотках полоидального поля и положением плазмы в токамаке Глобус-М2

Моделирование системы управления положением, током и формой плазмы на стенде реального времени

- Алгоритм восстановления равновесия и каскад управления током и формой плазмы реализованы на ЦМРВ «Регулятор»
- Линейная модель в отклонениях и каскад управления токами в обмотках полоидального поля реализованы на ЦМРВ «Модель объекта»
- Обе ЦМРВ содержат записанные сценарные значения зазоров, токов и потоков.
- ЦМРВ целевая машина реального времени
- Все регуляторы в системе управления настроены методом линейных матричных неравенств

Результаты моделирования системы управления в реальном времени

Слежение за зазорами (Разряд # 37326 на токамаке Глобус-М2)

Высокое быстродействие системы управления плазмой на цифровом стенде реального времени

Task Execution Time (TET)

• Алгоритм восстановления равновесия:

ТЕТ = 30 мкс

• АЦП и ЦАП:

ТЕТ = 33 мкс

- Каскад управления:
 TET = 4 мкс
- Общий:

ТЕТ = 67 мкс

Применение наблюдателя состояния для идентификации зазоров, полученных алгоритмом FCDI-I

Алгоритм FCDI-I имеет TET = 200 мкс, для уменьшения TET вместо алгоритма применяется наблюдатель состояния:

$$e(T_sk+T_s)=\left(A^d-LC^d\right)e(T_sk),$$

Наблюдатель синтезируется на массиве линейных моделей плазмы методом линейных матричных неравенств

$$\begin{cases} X \succ 0, \\ R_1(X, V) = L_{\mathbb{D}} \otimes X + M_{\mathbb{D}} \otimes \left(XA_{11} \right) + M_{\mathbb{D}}^{\mathrm{T}} \otimes \left(XA_{11} \right)^{\mathrm{T}} \\ - M_{\mathbb{D}} \otimes \left(VC_{11} \right) - M_{\mathbb{D}}^{\mathrm{T}} \otimes \left(VC_{11} \right)^{\mathrm{T}} \prec 0, \\ \vdots \\ R_r(X, V) = L_{\mathbb{D}} \otimes X + M_{\mathbb{D}} \otimes \left(XA_{nm} \right) + M_{\mathbb{D}}^{\mathrm{T}} \otimes \left(XA_{nm} \right)^{\mathrm{T}} \\ - M_{\mathbb{D}} \otimes \left(VC_{nm} \right) - M_{\mathbb{D}}^{\mathrm{T}} \otimes \left(VC_{nm} \right)^{\mathrm{T}} \prec 0, \\ L = X^{-1}V. \end{cases}$$

Инвертор напряжения в режиме 9-ти уровневой ШИМ

Многоуровневый ШИМ-контроллер реализован как приложение реального времени и может использоваться для управления затворами IGBT-транзисторов силовых Н-мостов

Моделирование систем управления вертикальным положением плазмы в токамаке Т15-МД на стенде реального времени

Сравнение систем управления вертикальным положением плазмы в токамаке Т-15МД по спектральной и электрической мощности

Спектральные мощности напряжений на НFC систем управления с 9-ур ШИМ и Реле и их отношение

Power supply	$\int P(t)dt,$	$\int P(t) dt, \int P^+(t)dt$		$\int P^{-}(t)dt,$	
	MJ	MJ	MJ	MJ	
9PWM	0.58	0.66	0.62	-0.04	
RAO	0.58	2.8	1.69	-1.11	
RAO/9PWM	1	4.24	2.73	27.75	

Электрические мощности на HFC систем управления с 9-ур ШИМ и Реле и их отношение

- Спектральная мощность системы управления с 9-ур ШИМ меньше на 17дБ (в 50 раз)
- Отрицательная электрическая мощность системы управления с 9-ур ШИМ меньше в 28 раз.

Заключение

- Разработана система управления положением, током и формой плазмы с кодом восстановления равновесия плазмы FCDI-F в обратной связи.
- Готовится внедрение разработанной цифровой системы управления плазмой в рабочий процесс экспериментов сферического токамака Глобус-М2 в ФТИ им. А.Ф. Иоффе.
- Разработан и реализован на ЦМРВ многоуровневый ШИМ-контроллер.
- Разработана система управления неустойчивым вертикальным положением плазмы в токамаке Т-15МД, проведено сравнение систем управления с разными источниками питания обмоток горизонтального поля.
- Проведена идентификация модели тока плазмы и полоидальных потоков на магнитных петлях по экспериментальным данным разрядов токамака Глобус-М2
- Для идентификации зазоров, полученных алгоритмом FCDI-I, применен наблюдатель состояния

Молодежная научная школа «Методы и системы управления плазмой в токамаках» Научный руководитель д.т.н., профессор Ю.В. Митришкин

Отчет за 2021-2022 гг. Россия, Москва, ИПУ РАН, 23 мая 2022 г. Подавление смещений плазмы по вертикали в токамаке ИГНИТОР

к.т.н. Карцев Н.М. ИПУ РАН

Постановка задачи

- Для токамака ИГНИТОР с базовой и расширенной полоидальными системами требуется синтезировать системы управления вертикальным положением плазмы
- Исследовать поведение системы управления положением плазмы в токамаке ИГНИТОР при действии возмущений вертикального положения плазмы типа Vertical Displacement Event (VDE)
- Исследовать область управляемости плазмы в токамаке ИГНИТОР по вертикальной координате с учетом ограничений на величину управляющего сигнала напряжения
- Номинальная модель объекта имеет вид линейных стационарных уравнений в пространстве состояний; исполнительные устройства: многофазный тиристорный выпрямитель и инвертор напряжения в режиме ШИМ, многоуровневая ШИМ

Полоидальные системы токамака ИГНИТОР

Базовый вариант. Для управления по вертикали используются катушки Р6 И Р12

Расширенный вариант. Для управления по вертикали используется катушка HFC

Синтез

Регуляторы управления положением плазмы синтезируются методом на основе нормализованной взаимнопростой факторизации и частотного формирования разомкнутого контура (Loop Shaping)

Номинальная масштабированная взвешенная факторизованная передаточная функция модели объекта

$$G_a(s) = W_1(s) d_{out}^{-1} G(s) d_{in} W_2 = M^{-1}(s) N(s)$$

Возмущенная факторизованная передаточная функция модели объекта

$$G_p(s) = (M(s) + \Delta_M(s))^{-1}(N(s) + \Delta_N(s))$$

Запас робастной устойчивости

$$\varepsilon = \left\| \Delta_M(s) \quad \Delta_N(s) \right\|_{\infty} < \frac{1}{\left\| Q(s) \right\|_{\infty}}$$

$$Q(s) = -\begin{bmatrix} K_{\infty}(s) \\ 1 \end{bmatrix} (I + G(s)K_{\infty}(s))^{-1} M^{-1}(s)$$

Финальный регулятор в обратной связи с учётом весовых функций и масштабирующих множителей

$$K_{VS}(s) = d_{in}W_2(s)K_{\infty}(s)W_1(s)d_{out}^{-1}$$

для понижения размерности, определяемой размерностью номинальной модели, редуцируется до 3 порядка

Моделирование системы управления вертикальным положением плазмы с катушкой HFC

- Возмущение VDE с оценкой амплитуды 0.05 м
- Ограничения на управляющий сигнал 1 кВ
- Исполнительные устройства двух типов: выпрямитель и инвертор в режиме ШИМ

Граница устойчивости системы управления вертикальным положением плазмы с катушкой HFC

Возмущение VDE с оценкой амплитуды:

- Ограничения на управляющий сигнал 1 кВ
- Исполнительное устройство: многофазный тиристорный выпрямитель

44

Моделирование системы управления вертикальным положением плазмы с парой катушек Р6 и Р12

- Возмущение VDE с оценкой амплитуды 0,05 м
- Ограничения на управляющий сигнал 1 кВ
- Исполнительные устройства двух типов: выпрямитель и инвертор в режиме ШИМ

Граница устойчивости системы управления вертикальным положением плазмы с парой катушек Р6 и Р12

Возмущение VDE с оценкой 15.0 мм 15.42 мм амплитуды: 0,05 0.04 δZ δZ Z_{ref} 0.04 ----- Z_{ref} 0.03 (II) Zg 0.02 ∃^{0,03} N 0,02 0.01 0,01 1000 1000 500 500 U_{HFC} (V) U_{HFC} (V) Ограничения на -500 -500 управляющий сигнал -1000-1000 1 кВ -1000 (V) -2000 -2000 -3000 -1000 (V) 24HIQ Исполнительное -3000 устройство: -4000-4006 многофазный $P_{HFC} (MW) = \frac{1}{2} \frac{1}{$ PHPC (NW) тиристорный выпрямитель

0.6

0.4

Time (s)

0.8

0

0,1

0,2

0,3

Time (s)

0,4

0,5

0,6

0,46

0.2

Ũ.

Область управляемости плазмы в токамаке ИГНИТОР по вертикальной координате

Областью управляемости неустойчивой линейной модели с ограниченным входным воздействием называется ограниченная область в пространстве состояний, в которой можно переводить модель объекта из одной точки в другую с помощью ограниченного входного воздействия, причем вне этой области траектории модели уходят в бесконечность при любых значениях управляющего воздействия.

Неустойчивый объект не может быть стабилизирован глобально в пространстве состояний с ограниченным управляющим воздействием

Катушки	HFC			P6 & P12		
δΖ _{max,} мм	80	200	300	3,5	6	42
δI _{HFC max} , кА	26	56,5	82,6	0,48	0,74	4,26
Р _{НFC max} , МВт	18,6	56,8	89,3	0,25	0,56	4,1

Моделирование системы управления вертикальным положением плазмы с катушкой HFC и инвертором с многоуровневой ШИМ

Заключение

- Синтезированы системы управления вертикальным положением плазмы для базовой и расширенной полоидальной системы в проекте токамака ИГНИТОР;
- Проведено численное моделирование синтезированных системы управления при ограничении управляющих сигналов с различными вариантами линейных и нелинейных моделей исполнительных устройств: выпрямителя и инвертора в режиме ШИМ, а также многоуровневой ШИМ;
- Проведено исследование методом численного моделирования возмущений типа VDE в замкнутой системе управления;
- Численно исследована область управляемости плазмы в токамаке ИГНИТОР по вертикальной координате.

Молодежная научная школа «Методы и системы управления плазмой в токамаках» Отчет за 2021-2022 гг. Россия, Москва, ИПУ РАН, 23 мая 2022 г.

Идентификации зазоров, полученных алгоритмом FCDI, и настройка системы управления положением плазмы и токами в катушках полоидального поля в токамаке Глобус-М2

м. н. с. Кружков В. И.

Постановка задачи

Необходимо оценивать форму плазмы по измерениям с магнитных петель в реальном времени и с поясов Роговского, измеряющих токи в обмотках полоидального поля.

Форма плазмы вычисляется с помощью кода восстановления равновесия плазмы FCDI (Flux-Current Distribution Identification), который, на данный момент, работает недостаточно быстро.

Точки на сепаратрисе плазмы и магнитные петли в вертикальном сечение токамака Глобус-М2

Limiter PF coils Loops

Идентификация

- Использованы измерения с магнитных петель, а также данные по токам в катушках управления, полученные на 51-м разряде токамака Глобус-М2
- С помощью кода восстановления равновесия получены значения формы плазмы (значения зазоров G1-G6) в течении разряда
- Проведена идентификация между измерениями магнитных петель и токов в катушках управления нейронными сетями различной конфигурации

Сигналы, полученные на разряде #37255 сферического токамака Глобус-М2. На нижнем графике показана динамика изменения формы плазмы на диверторной фазе, восстановленная с помощью кода FCDI.

Нейронные сети

Варианты функций активации

• Прямого распространения:

 $\begin{aligned} x_1 &= activation_1(W_1 \cdot input + b_1), \\ x_2 &= activation_2(W_2 \cdot x_1 + b_2), \end{aligned}$

$$x_{n-1} = activation_{n-1}(W_{n-1} \cdot x_{n-2} + b_{n-1}),$$

output_nn = $W_n \cdot x_{n-1} + b_n;$

. . .

• Рекуррентные:

$$h_{t} = activation(W_{1} \cdot input + W_{h} \cdot h_{t-1} + b_{h}),$$

output _ rnn=W_{2} \cdot h_{t} + b_{2}.

$$\operatorname{ReLU}(x) = \begin{cases} 0, & x < 0\\ x, & x \ge 0 \end{cases}$$

$$\operatorname{LeakyReLU}(x) = \begin{cases} 0,01x, & x < 0\\ x, & x \ge 0 \end{cases}$$

$$\operatorname{ELU}(x) = \begin{cases} e^{x} - 1, & x < 0\\ x, & x \ge 0 \end{cases}$$

$$\operatorname{Sigmoid}(x) = \frac{1}{1 + e^{-x}},$$

$$\operatorname{LogSigmoid}(x) = \log \frac{1}{1 + e^{-x}},$$

$$\operatorname{Tanh}(x) = \tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}.$$

Выбор оптимальной структуры

• Время работы пропорционально квадрату числа нейронов:

$$TET(n,s) = a \cdot n \cdot s^{2} + b; \qquad a = 7,33 \cdot 10^{-10} c, \qquad b = 1,79 \cdot 10^{-6} c.$$

прямого распространения на точность

точность

55

Реализация алгоритма нейронной сети для оценки формы плазмы на машине цифрового стенда реального времени

Система управления реального времени

- На стенде используются два компьютера Speadgoat Performance, позволяющих проводить моделирование систем управления в реальном времени, соединенных обратной связью
- Компьютер-регулятор может быть перенесен на реальный объект

Настройка непрерывных ПИД-регуляторов положения плазмы методом QFT

- Использован метод количественной теории обратной связи (Quantitative Feedback Theory QFT)
- Расстояние от (-180°, 0) до диаграммы Николса разомкнутой системы – запасы устойчивости
- Использован программный пакет QFT Control Toolbox для настройки робастного регулятора с учетом нескольких линейных моделей плазмы

Моделирование системы управления положением плазмы и полоидальными токами на стенде реального времени

ЦМРВ «Регулятор»

ЦМРВ «Модель объекта»

Заключение

- Оценка формы плазмы (зазоров) с помощью нейронной сети удовлетворяет требованиям по точности (~4·10⁻⁵ м²) И быстродействию (~5·10⁻⁶ с).
- Нейронная сеть может быть реализована на машине реального времени и применена для оценки формы плазмы токамака Глобус-М2 в физических экспериментах.
- Синтезирована и протестирована на стенде реального времени цифровая система управления положением плазмы и токами в катушках полоидального поля.
- Разработанные цифровые ПИД-регуляторы могут в дальнейшем быть использованы в каскадной системы управления формой плазмы. 60

Отчет молодежной научной школы «Методы и системы управления плазмой в токамаках»

РАЗРАБОТКА И МОДЕЛИРОВАНИЕ СИСТЕМ МАГНИТНОГО УПРАВЛЕНИЯ НЕУСТОЙЧИВЫМ ВЕРТИКАЛЬНЫМ ПОЛОЖЕНИЕМ ПЛАЗМЫ В ТОКАМАКЕ Т-15МД МЕТОДОМ LMI

Е.А. Павлова, научный сотрудник ИПУ РАН Научный руководитель: Ю.В. Митришкин, д.т.н., профессор

Институт проблем управления им. В.А. Трапезникова РАН Москва, 23 мая 2022 г.

Токамак Т-15МД, вертикальная неустойчивость плазмы, исполнительное устройство

Обмотки тороидального и горизонтального поля токамака Т-15МД

Конструкция токамака Т-15МД

Физика вертикальной неустойчивости плазмы

Ток плазмы Ір, МА	2
Аспектное отношение А	2.2
Большой радиус тора R _o , м	1.48
Малый радиус плазмы а, м	0.67
Вытянутость сечения k95	1.7-1.9
Треугольность б95	0.3-0.4
Тороидальное поле на оси плазмы В _t _{Ro} , Тл	2.0
Длительность плато разряда $\Delta t_{plateau}$, с	5-10
Суммарный запас потока $\Delta \Psi_{on}$, Вб	6
Мощность нагрева плазмы Рдоп., МВт	20
Плотность плазмы n _e , 10 ²⁰ м ⁻³	≤ 1

Силовая часть шестипульсного многофазного тиристорного выпрямителя.

Постановка задачи

 $u = Kx, K = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}$

Блок-схема замкнутой системы управления

Регулятор по измеряемому вектору состояния:

Сравнить разработанные системы робастного управления неустойчивым вертикальным положением плазмы в токамаке T-15MД на линейных моделях плазмы и исполнительного устройства с аддитивным возмущением по критериям: - пик мощности управления при отражении максимального импульсного возмущения,

- радиус робастной устойчивости.

Применить наилучшую систему на стенде реального времени.

Допустимые возмущения

С помощью метода инвариантных эллипсоидов проведена оценка величины допустимого возмущения *w*. Для всех возмущений, удовлетворяющих условию $|w| \le 1561,1$ A, выход системы остается в пределах полосы $|z| \le 0,02$ м при входном управляющем воздействии $|u| \le 1$ B.

 $\dot{x} = Ax + B_1 u + B_2 w, \ y = Cx,$

 $x = [U \ I \ Z]^T$ – состояние системы, U(t) – напряжение, I(t) – ток в катушке управления, Z(t) – вертикальное смещение плазмы, P(t)=U(t)I(t) – мощность управления, u(t) – управление, y(t) – выход системы, w(t) – аддитивное возмущение.

$$A = \begin{bmatrix} -\frac{1}{T_a} & 0 & 0 \\ \frac{K_c}{T_c} & -\frac{1}{T_c} & 0 \\ 0 & \frac{K_p}{T_p} & \frac{1}{T_p} \end{bmatrix}, B_1 = \begin{bmatrix} \frac{K_a}{T_a} \\ 0 \\ 0 \\ \end{bmatrix}, B_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{K_p}{T_p} \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

M:

$$T_a = 3.3 \text{ ms}, \ T_p = 20.8 \text{ ms}, \ T_c = 46.7 \text{ ms},$$

 $K_a = 2000, \ K_p = 1.78 \frac{cm}{kA}, \ K_c = 11.11 \frac{1}{\Omega}.$

Pavlova E.A., Mitrishkin Y.V., Khlebnikov M.V. Control system design for plasma unstable vertical position in a tokamak by linear matrix inequalities // Proceedings of the 11th IEEE International Conference on Application of Information and Communication Technologies (AICT), Moscow, Russia, 2017. P. 458-462.

Анализ мощности управления и радиусов робастной устойчивости

Нормализованные границы областей устойчивости и окружности, определяющие радиус робастной устойчивости

Тип	Полюса системы		
регулятора			
1	-300; -300; -300		
2	-37476737; -238; -48		
3	$-300 \pm 670i; -288$		
4	$-294 \pm 595i; -278$		
5	$-273 \pm 151i; -289$		
6	-352752540; -952; -647;		
	-303; -163; -21		
7	$-280 \pm 138i; -287$		
8	$-1388 \pm 1200i; -580$		

Полюса замкнутых систем управления с различными типами регуляторов

Анализ мощности управления и радиусов робастной устойчивости

	Тип регулятора	Радиус робастной	Пиковое значение мощности (Вт)			
		устойчивости	при подаче возмущения	при сбросе возмущения	при подаче задающего воздействия	при сбросе задающего воздействия
1	регулятор по состоянию с 3-ёх кратным полюсом	0,2238	1,33.106	1,35.106	1,62·10 ⁶	4,28·10 ⁶
2	<i>H</i> ₂ регулятор	0,4168	$1,18.10^{6}$	6,35·10 ⁵	$4,95 \cdot 10^5$	3,05·10 ⁶
3	робастный H_2 регулятор с размещением полюсов в $D_{\alpha,r,\mathcal{G}}$ области	0,6515	1,65·10 ⁶	1,88·10 ⁶	5,67.107	7,74·10 ⁷
4	регулятор с размещением полюсов в $D_{\alpha,\beta}$ области	0,6609	1,63·10 ⁶	1,74·10 ⁶	4,08·10 ⁷	5,95·10 ⁷
5	H_2 регулятор с размещением полюсов в $D_{\alpha,r,\theta}$ области	0,6630	1,16·10 ⁶	1,11·10 ⁶	4,92·10 ⁶	1,01.107
6	регулятор по выходу	0,6848	9,22·10 ⁵	1,24·10 ⁶	9,48·10 ⁶	1,85.107
7	регулятор с размещением полюсов в $D_{\alpha,r,g}$ области	0,7234	1,15.106	1,11.106	4,77.106	9,88·10 ⁶
8	H_{∞} регулятор	0,8349	$1,95 \cdot 10^{6}$	$3,1.10^{6}$	$1,57.10^{8}$	$2,02 \cdot 10^{8}$

Моделирование системы управления вертикальным положением плазмы на цифровом

стенде реального времени

Структурная схема цифровой системы управления вертикальным положением плазмы в токамаке Т-15МД

Моделирование системы управления вертикальным положением плазмы на цифровом

стенде реального времени

Цифровые сигналы переходных процессов в реальном времени при действии задающего воздействия *Z* = 0,03 м, w=0

Моделирование системы управления вертикальным положением плазмы на стенде

реального времени

Цифровые сигналы переходных процессов в реальном времени при действии возмущения *w* = 1500 A, задающее воздействие равно нулю.

Результаты

- Проведен анализ систем управления для стабилизации вертикального неустойчивого положения плазмы на модели токамака T-15, синтезированных с помощью метода LMI :
 - ✓ с размещением полюсов замкнутой системы управления в LMI-областях комплексной плоскости:
 - в вертикальной полосе $D_{\alpha,\beta}$,
 - в пересечении полуплоскости и сектора $-D_{\alpha,r,\vartheta}$,
 - ✓ H_2 регулятор с размещением полюсов в $D_{\alpha,r,g}$ области,
 - ✓ H_2 робастный регулятор с размещением полюсов в $D_{\alpha,r,\vartheta}$ области,
 - ✓ *Н*∞ робастный регулятор,
 - ✓ Регулятор по выходу,
 - а также системы с размещением полюсов в одной точке (с 3-х кратным полюсом).
- Регулятор с размещением полюсов в D_{α,r,θ} области является наилучшим одновременно по двум критериям: по критерию мощности управления при отработке внешнего возмущения 1,15·10⁶ Вт и при действии задающего воздействия 4,77·10⁶ Вт, а также по радиусу робастной устойчивости 0,7234.
- Разработанная цифровой системы управления с расположением полюсов в D_{α,r,g} области для неустойчивого вертикального положения плазмы токамака Т-15МД промоделирована в реальном времени на стенде. Система обеспечивает стабилизацию вертикального положения плазмы на неустойчивой модели при действии возмущения типа «малый срыв». Настроенный цифровой регулятор может быть применен в обратной связи системы управления непосредственно на токамаке Т-15МД.

Диссертация

Диссертационный совет МГУ.01.12 МГУ имени М.В. Ломоносова

01.04.01 - Приборы и методы экспериментальной физики (физ.-мат. науки) Анализ, синтез и математическое моделирование робастных систем управления положением, током и формой плазмы в токамаках Т-15МД и Глобус-М/М2

Содержание

Введение

Глава 1. Магнитное управление плазмой в токамаках. Современное состояние проблемы. Глава 2. Системы управления неустойчивым вертикальным положением плазмы в токамаке Т-15МД.

Глава 3. Идентификация и синтез многосвязных и многоконтурных систем управления положением, током и формой плазмы в токамаке Глобус-М/М2.

Глава 4. Структурный анализ и синтез систем управления плазмой в токамаке Глобус-М/М2. Заключение

Молодежная научная школа «Методы и системы управления плазмой в токамаках» Отчет за 2021-2022 гг. Россия, Москва, ИПУ РАН, 23 мая 2022 г. Научный руководитель д.т.н., профессор Митришкин Ю.В.

Робастное и адаптивное управление неустойчивым вертикальным положением плазмы в токамаке

Иванова С.Л. ИПУ РАН, Физический факультет МГУ

Постановка задачи управления вертикальным положением плазмы

Иллюстрация возникновения неустойчивости вертикально вытянутой плазмы в токамаке

Структурная схема одноконтурной системы управления вертикальным положением плазмы в токамаке

Плазма вытягивается по вертикали магнитными полями для увеличения давления, что нарушает симметрию распределения токов и магнитных полей и приводит к вертикальной неустойчивости плазмы.

Метод решения - Quantitative Feedback Theory (QFT)

Был синтезирован **робастный** ПИД-регулятор методом QFT: P = 39, I = 563, D = 1,38, N = 12291

Эта теория применяет построение границ для АФЧХ разомкнутой системы на диаграмме Николса, которые строятся для разных параметров системы из ограничения следующих передаточных функций:

$$\begin{aligned} |T_{1}(j\omega)| &= \left| \frac{y(j\omega)}{r(j\omega)F(j\omega)} \right| = \left| \frac{P(j\omega)G(j\omega)}{1+P(j\omega)G(j\omega)} \right| \le \delta_{1}(\omega) \\ |T_{2}(j\omega)| &= \left| \frac{y(j\omega)}{d(j\omega)} \right| = \left| \frac{1}{1+P(j\omega)G(j\omega)} \right| \le \delta_{2}(\omega) \\ \delta_{3a} \le |T_{3}(j\omega)| &= \left| \frac{y(j\omega)}{r(j\omega)} \right| = \left| F(j\omega) \frac{P(j\omega)G(j\omega)}{1+P(j\omega)G(j\omega)} \right| \le \delta_{3b}(\omega) \end{aligned}$$

$$\delta_1 = 1, 28, \delta_2(s) = \frac{0,001s}{0,001s+1}, \delta_{3a}(s) = \frac{s}{0,001s+1}, \delta_{3b}(s) = \frac{0,001s+1}{0,0000001s^2+0,001s+1}.$$

Путем настройки коэффициентов ПИД-регулятора изменяется положение $L_0(j\omega)$ на диаграмме.

Если $L_0(j\omega)$ лежит выше границ с минимальной и ниже границ с максимальной амплитудой на каждой частоте, значит система с робастным регулятором удовлетворяет всем заданным характеристикам.

$$L_0(j\omega) = P_0(j\omega)G(j\omega),$$

- АФЧХ номинальной модели объекта управления и регулятора

l

73

w = [0.5 1 5 10 50 100 500 1000 5000] рад/с

Результаты моделирования

Переходные характеристики при подаче задающего воздействия r =1 см и нулевом

Переходные характеристики при подаче возмущающего воздействия d=1kA и нулевом задающем воздействии

Согласно критерия Найквиста разработанная система устойчива. Запасы устойчивости для номинальной модели: GM = 17дБ, PM = 26°

Дискретизация системы и моделирование на стенде реального времени

Для моделирования на стенде полученная система управления была переведена в дискретное время с шагом дискретизации 100 мкс методом ZOH (фиксатор нулевого порядка), где пропорциональные звенья сохраняются, а интегрирующие звенья $\frac{1}{s}$ заменяются на $\frac{\Delta t}{1-z}$, Δt – шаг дискретизации

Стенд реального времени для моделирования систем управления плазмой в токамаках в ИПУ РАН

Аналоговый сигнал

Результаты моделирования в реальном времени

Переходная функция при подаче на систему управления ступенчатого задающего воздействия 5 см в режиме реального времени Графики изменения напряжения, тока и мощности в ОГУП и сигналы с АЦП и ЦАП при подаче ступенчатого задающего воздействия 5 см в режиме реального времени

Для полученной системы управления с робастным ПИДрегулятором ТЕТ получился около 25,7 мкс

Задача подстройки регулятора при изменяющихся параметрах модели плазмы в течение разряда

В качестве блока "Измерение параметров" был применен метод МНК по измерениям в дискретных точках входного и выходного сигналов блока "Модель", а именно сигналов тока плазмы *I* и положения *Z* для определения коэффициента *K* и *T*. Коэффициент *K* ∈ [1,78; 7,61] сm/kA, коэффициент *T* ∈ [0,0208; 0,093]

$$J_k = \sum_{k=1}^n (T \frac{Z(k+1) - Z(k)}{\Delta t} - Z(k) - KI(k))^2 \rightarrow \min$$

В качестве блока "Синтез регулятора" был выбран метод обеспечения необходимого расположения корней характеристического полинома на комплексной плоскости.

Характеристическое уравнение замкнутой системы:

$$s^{4} + \frac{T_{p} - T_{c} + l_{0}T_{p}T_{c}}{T_{p}T_{c}}s^{3} + \left(\frac{l_{0}T_{p} - l_{0}T_{c} + Kc_{1} - 1}{T_{p}T_{c}}\right)s^{2} + \frac{c_{0}K - l_{0}}{T_{p}T_{c}}s + \frac{c_{0}K}{T_{p}T_{c}}s + \frac{c_{0}K}{T$$

Результаты работы алгоритма

Алгоритм вычисления коэффициентов модели плазмы методом МНК и коэффициентов регулятора занимает 0,02с. Время моделирования 0.003с . Следовательно, в течение одного разряда, составляющем около 1с, можно осуществить 43 итераций подстройки регулятора.

Результаты моделирования системы управления неустойчивым вертикальным положением плазмы, осуществляющей 43 итераций подстройки регулятора под изменяющуюся модель плазмы

Выводы

- Синтезирован робастный ПИД-регулятор с неопределенностью коэффициентов модели объекта 20 процентов методом QFT
- Полученная система управления имеет время переходного процесса 300 мс при тестировании функцией Хевисайда и подавляет внешнее возмущение за это же время
- Запас устойчивости номинальной СУ по амплитуде 17 дБ, по фазе 26 градусов
- СУ в дискретном времени была промоделирована на цифровом стенде реального времени с TET (task execution time) = 25,7 мкс
- получен алгоритм подстройки коэффициентов ПИД-регулятора под изменяющиеся параметры модели плазмы в течение одного разряда
- в течение одного разряда (1с) алгоритм успевает синтезировать 43 регулятора под изменяющуюся модель

Молодежная научная школа Методы и системы управления плазмой в токамаках Научный руководитель д.т.н., профессор Ю.В. Митришкин Отчет за 2021-2022 гг. Автоколебательная система управления неустойчивым вертикальным положением плазмы в токамаке Т-15МД с релейным исполнительным устройством

> Смирнов И.С. ИПУ РАН, Физический факультет МГУ

Структурная схема автоколебательной системы управления вертикальным положением плазмы в токамаке Т-15МД для моделирования в среде MATLAB/Simulink

 Z_{ref} – задающее воздействие, Z – вертикальное смещение плазмы, e – ошибка регулирования, g – сигнал с регулятора обратной связи, U_{coil} , I_{coil} – напряжение и ток катушки управления, w – внешнее возмущение.

Модель исполнительного устройства – инвертора напряжения в релейном режиме

Мостовая схема инвертора напряжения на базе IGBT-транзисторов

Блок-схема инвертора напряжения в релейном режиме. *U_{control}* — управляющее напряжение.

Модель исполнительного устройства – инвертора напряжения в релейном режиме

Схема модели исполнительного устройства в среде MATLAB/Simulink. Звено реле работает в двухпозиционном режиме.

Вход и выход модели исполнительного устройства связан уравнением:

$$U_{coil}(t) = U_0 \operatorname{sign} g(t - \tau),$$

где U_0- заданное напряжение, $\mathrm{sign}-$ функция знака, au- величина запаздывания.

Решение уравнений модели объекта управления в непрерывном времени

• Уравнение звена катушки управления:

$$L\frac{dI_{coil}(t)}{dt} + RI_{coil}(t) = U_{coil}(t).$$

• Общее решение:

$$I_{coil}(t) = I_{coil}(0)e^{-t\frac{R}{L}} + \frac{1}{L}\int_0^t e^{-(t-t')\frac{R}{L}} U_{coil}(t') dt'$$

Уравнение неустойчивой линейной модели плазмы:

$$T_p \frac{dZ(t)}{dt} - Z(t) = K_p(I_{coil}(t) + w(t)).$$

• Общее решение:

$$Z(t) = Z(0)e^{\frac{t}{T_p}} + \frac{K_p}{T_p} \int_0^t e^{(t-t')\frac{1}{T_p}} \left(I_{coil}(t') + w(t') \right) dt'$$

Решения уравнений модели объекта управления в дискретном времени

Дискретное время: $t=kT,\;k=0,1,2,\ldots,\;T-$ шаг дискретизации = 100 мкс.

• Разностное уравнение звена катушки управления:

$$L\frac{I_{coil}(k+1) - I_{coil}(k)}{T} + RI_{coil}(k) = U_{coil}(k).$$

• Общее решение:

$$I_{coil}(k) = I_{coil}(0) \left(1 - T\frac{R}{L}\right)^k + \frac{T}{L} \sum_{n=0}^{k-1} \left(1 - T\frac{R}{L}\right)^{k-1-n} U_{coil}(n).$$

• Разностное уравнение неустойчивой линейной модели плазмы:

$$T_p \frac{Z(k+1) - Z(k)}{T} - Z(k) = K_p (I_{coil}(k) + w(k)).$$

• Общее решение:

$$Z(k) = Z(0) \left(1 + \frac{T}{T_p}\right)^k + T \frac{K_p}{T_p} \sum_{n=0}^{k-1} \left(1 + \frac{T}{T_p}\right)^{k-1-n} \left(I_{coil}(n) + w(n)\right).$$

Закон управления в обратной связи

В качестве регулятора обратной связи используется ПИД-регулятор с законом управления в виде:

$$g(t) = K_P e(t) + K_I \int_0^t e(t') dt' + K_D \frac{de(t)}{dt},$$

где

 $e(t) = Z_{ref}(t) - Z(t)$

— ошибка регулирования.

 K_P, K_I, K_D- параметры регулятора.

• Закон управления ПИД-регулятора в дискретном времени:

$$g(k) = K_P e(k) + K_I T \sum_{n=0}^{k} e(n) + K_D \frac{e(k) - e(k-1)}{T}.$$

Зависимость вертикального смещения плазмы Z от задающего воздействия Z_{ref} при w = 0 в непрерывном и дискретном времени в замкнутой системе управления

Непрерывное время:Дискретное время:
$$Z(t) = Z(0) e^{\frac{t}{T_p}}$$
 $Z(k)$ $+ \frac{K_p}{T_p} \int_0^t e^{(t-t')\frac{T}{T_p}} \left[l_{coll}(0) e^{-t'\frac{R}{L}} + \frac{1}{L} \int_{\tau}^{t'} e^{-(t'-t'')\frac{R}{L}} U_0 sign \left(K_p \left(Z_{ref}(t'' - \tau) - Z(t'' - \tau) \right) + K_l \int_{0}^{t''-\tau} \left(Z_{ref}(t''') - Z(t''') \right) dt'''$ $Z(k)$ $+ K_l \int_{0}^{t''-\tau} \left(Z_{ref}(t''') - Z(t''') \right) dt'''$ $= Z(0) \left(1 + \frac{T}{T_p} \right)^{k-1-n} \left[l_{coll}(0) \left(1 - T\frac{R}{L} \right)^n + K_p \frac{T}{T_p} \sum_{n=0}^{n-1} \left(1 - T\frac{R}{L} \right)^{k-1-n} U_0 sign \left(K_p \left(Z_{ref} \left(m - \frac{\tau}{T} \right) - Z \left(m - \frac{\tau}{T} \right) \right) \right)$ $+ K_l \int_{0}^{t''-\tau} \left(Z_{ref}(t''' - \tau) - Z(t''' - \tau) \right) dt'''$ $+ K_l T\sum_{i=0}^{n-1} \left(Z_{ref}(i) - Z(i) \right) + K_i T\sum_{i=0}^{n-1} \left(Z_{ref}(m - \frac{\tau}{T}) - Z \left(m - \frac{\tau}{T} \right) \right) \right]$

Зависимость вертикального смещения плазмы Z от внешнего возмущения w при $Z_{ref} = 0$ в непрерывном и дискретном времени в замкнутой системе управления Непрерывное время: Дискретное время: $Z(k) = Z(0) \left(1 + \frac{T}{T_{\star}}\right)^{k}$ $Z(t)=Z(0) e^{\frac{t}{T_p}}$ $+ \frac{K_p}{T_p} \int^{t} e^{(t-t')\frac{1}{T_p}} w(t') + I_{coil}(0) e^{-t'\frac{R}{L}}$ $+K_{p}\frac{T}{T_{p}}\sum_{n=0}^{k-1}\left(1+\frac{T}{T_{p}}\right)^{k-1-n}w(n)+I_{coil}(0)\left(1-T\frac{R}{L}\right)^{n}$ $-\frac{1}{L}\int_{0}^{t'}e^{-(t'-t'')\frac{R}{L}}U_{0} sign\left(K_{P}Z(t''-\tau)\right)$ $-\frac{T}{L}\sum_{m=1}^{n-1}\left(1-T\frac{R}{L}\right)^{k-1-m}U_{0}\,sign\left(K_{P}Z\left(m-\frac{\tau}{T}\right)\right)$ $+ K_I \int^{t''-\tau} Z(t''') dt''' + K_D \frac{dZ(t''-\tau)}{dt''} dt'' dt'.$ $+K_{I}T\sum_{i=1}^{m-\tau/T}Z(i)+K_{D}\frac{Z\left(m-\frac{\tau}{T}\right)-Z\left(m-1-\frac{\tau}{T}\right)}{T}\right)\bigg|.$

88

Цифровая структурная схема системы управления вертикальным положением плазмы в токамаке Т-15МД

Цифровые сигналы на стенде реального времени. Переходные процессы в автоколебательной системе при действии внешнего возмущения *w* или задающего воздействия *Z*_{ref}

$$w = 0$$

$$Z_{ref} = 0$$

Выводы

- Проведено моделирование разработанной автоколебательной системы управления неустойчивым вертикальным положением плазмы в токамаке Т-15МД на стенде реального времени
- Система обеспечивает локальную стабилизацию вертикального положения плазмы на неустойчивой модели с возмущением и ограниченным управляющим воздействием – напряжением на катушке управления
- Настроенный цифровой ПИД-регулятор может применяться непосредственно на токамаке Т-15МД

Отчет молодежной научной школы «Методы и системы управления плазмой в токамаках»

Разработка модели концентрации электронов в токамаке Глобус-м2 при помощи искусственной нейронной сети

Н.Е.Овсянников, аспирант физ.факультета МГУ им. М.В.ЛомоносоваНаучный руководитель:Ю.В. Митришкин, д.т.н., профессор

Институт проблем управления им. В.А. Трапезникова РАН Москва, 23 мая 2022 г.

Диагностика токамака Глобус-М2 (вид сверху)

Создание модели линейной хордовой концентрации электронов

Фундаментальная проблема управления, возникающая в токамаках - это регулирование нескольких основных свойств плазмы, таких как плотность, температура, ток и т.д. с целью еë характеристик. Количественно улучшения улучшения выражаются в увеличении такие времени удержания энергии, давления плазмы и плотности мощности термоядерного синтеза. В данной работе представлено создание модели линейной хордовой концентрации электронов на основе искусственной нейронной сети, которая в дальнейшем будет использована для построения системы управления данным параметром.

Экспериментальные данные используемые для создания модели получены на токамаке Глобус-М2.

Экваториальное сечение токамака. Чёрные окружности – внешняя и внутренняя первая стенка. Жёлтым показан зондирующий луч. Красным показаны хорды наблюдения системы сбора света.

Данные используемые в модели

Управляющая переменная

Управляемая переменная

Наблюдаемые переменные

	Единицы измерений
Ток плазмы, Ір	kA
Ток в CS, Ics	kA
Ток в СС, Ісс	kA
Ток в PF1, Ipf1	kA
Ток в PF3, Ipf3	kA
Ток в EFCC, Iefcc	kA
Ток в TF, Itf	kA

Значения линейной хордовой концентрации электронов плазмы измеряются интерферометром вдоль вертикальной хорды, R = 42 см $y(t) = F(x(t), \theta)$

x(t) - временная последовательность входных данных

y(t) - временная последовательность выходных данных

В общем случае x(t) и y(t) – матрицы с размерностями временных интервалов и входных признаков Нейронная сеть аппроксимирует неизвестную функцию F путём настройки весов в на обучающих данных.

Обучение производилось на 100 разрядах, затем была выполнена проверка на 4 разрядах, которые сеть при обучении не видела.

Архитектура нейронной сети

Гиперпараметры сети

Функция активации внутренних нейронов ReLU

$$f(S) = max(0,S) = \begin{cases} 0, \text{при}S < 0\\ S, \text{при}S \ge 0 \end{cases}$$

Функция потерь: среднеквадратичная ошибка

$$MSE = \frac{1}{n} \sum_{i=1}^{n} [Y_i - \widehat{Y}_i]^2$$

Алгоритм оптимизации Adam $\alpha = 0.001$

$$\theta_t = \theta_{t-1} - \alpha \frac{\widehat{m_t}}{\sqrt{\widehat{v_t}} + \varepsilon}$$

 θ_t – значение весов в момент t

$$\widehat{n_t}, \, \widehat{v_t} \, - \,$$
смещённые оценки моментов 97

Результаты моделирования нейронной сети для различных разрядов

Линейная хордовая концентрация

Выводы

На основе экспериментальных данных, полученных с токамака Глобус-М2 построена модель линейной хордовой концентрации электронов;

Среднеквадратическая ошибка имеет значение около $1 \, c M^{-2}$ для различных разрядов;

Временной шаг модели составляет 0,015 мкс;

В дальнейшем данная модель будет использована для построения системы управления концентрацией электронов при помощи алгоритмов обучения с подкреплением.